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Hypothetical World

Consider an eligible patient population.

Imagine two parallel worlds: one where everyone is assigned
Treatment 0 and one where everyone is assigned Treatment 1.

Denote Y 0 and Y 1 the potential/hypothetical outcomes in
the two parallel worlds.
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Marginal Causal Contrasts

Causal contrasts of interest often reflect a contrast between
the means of the distributions of Y 0 and Y 1: E

(
Y 0

)
and

E
(
Y 1

)
Mean difference E

(
Y 1

)
− E

(
Y 0

)
Mean ratio E

(
Y 1

)
/E

(
Y 0

)
Odds ratio E(Y 1)/{1−E(Y 1)}

E(Y 0)/{1−E(Y 0)}

. . .

These are marginal/unconditional causal contrasts.

The (marginal) causal contrast can also be a contrast of other
summaries of the distributions of Y 0 and Y 1; e.g., for
time-to-event outcomes.

5 / 36



Marginal Causal Contrasts

Causal contrasts of interest often reflect a contrast between
the means of the distributions of Y 0 and Y 1: E

(
Y 0

)
and

E
(
Y 1

)
Mean difference E

(
Y 1

)
− E

(
Y 0

)
Mean ratio E

(
Y 1

)
/E

(
Y 0

)
Odds ratio E(Y 1)/{1−E(Y 1)}

E(Y 0)/{1−E(Y 0)}

. . .

These are marginal/unconditional causal contrasts.

The (marginal) causal contrast can also be a contrast of other
summaries of the distributions of Y 0 and Y 1; e.g., for
time-to-event outcomes.

5 / 36



Real world: Randomization

In real life, patients are randomized to only one group.

The randomized group is denoted A and the factual/observed
outcome Y .

Randomization ensures that causal contrasts correspond to
statistical contrasts:

E
(
Y 1

)
− E

(
Y 0

)
= E (Y |A = 1)− E (Y |A = 0).
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Conditional Causal Contrasts

Causal contrasts of interest can also reflect a contrast
between the means of the distributions of Y 0 and Y 1 in a
subset of patients (e.g., females):

e.g., mean difference E
(
Y 1|sex = f

)
− E

(
Y 0|sex = f

)

These are conditional (i.e., within stratum of baseline
variable(s)) estimands.

Randomization ensures that
E
(
Y 1|sex = f

)
− E

(
Y 0|sex = f

)
= E (Y |A = 1, sex = f ) − E (Y |A = 0, sex = f ).

However, estimation typically requires model assumptions
(such as logistic regression model) and the estimate is often
uninterpretable under model misspecification.
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Conditioning versus Adjusting

Confusing: Traditionally ‘conditional’ and ‘adjusted’ have
been used interchangeably, likewise for ‘marginal’ and
‘unadjusted’.

Better suggestion:

marginal/conditional are related to the ‘estimand’ of interest
unadjusted/adjusted are related to the ‘analysis’ performed

Perfectly possible to obtain an adjusted estimator of a
marginal estimand.

Adjusted estimators of marginal estimands are almost
always more precise than unadjusted estimators.

Recent FDA guidelines make a distinction between
conditioning and adjusting (FDA, 2023).

Recommendations for covariate adjustment.
Advice on both conditional, and marginal estimands.
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Conditional Causal Contrasts

Until now, our estimand definitions have been completely
model-free.

In practice, treatment effects are usually encoded as
parameters in a generalised linear model; e.g.

g{E (Y |A,X )} = β0 + β1A+ β2X

where g(·) is a pre-specified link function.
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Conditional Contrasts: Continuous Outcome

Let’s consider a continuous outcome Y (e.g., bloodpressure).

One may then fit the model

E (Y |A,X ) = β0 + β1A+ β2X .

Statistical modelling assumption: no interaction between A
and X on the linear scale

Not implied by randomisation.

If assumption holds:

β1 carries an interpretation as both an age-specific (i.e.,
conditional) causal effect and a marginal causal effect.

This is not necessarily true if one includes interactions! (Ye
et al., 2022)
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Conditional Causal Contrasts: Other Outcomes

For a binary outcome Y , it is more common to choose the
logistic regression model

logit{E (Y |A,X )} = β0 + β1A+ β2X .

If the model reflects the truth, then the effect of treatment
(β1) does not differ for different values of X .

Unlike in the linear case, exp(β1) would only retain an
interpretation as a conditional effect,

E (Y 1|X = x)/{1− E (Y 1|X = x)}
E (Y 0|X = x)/{1− E (Y 0|X = x)}

,

which may differ from the marginal causal odds ratio

E (Y 1)/{1− E (Y 1)}
E (Y 0)/{1− E (Y 0)}

.
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Conditional Causal Contrasts: Other Outcomes

Standard practice based on logistic regression does not
typically target a marginal effect.

This phenomenon occurs due to the non-collapsibility of the
logistic link function; see Daniel et al. (2021).

Not unique to logistic regression; e.g., Cox proportional
hazards models.

When the model is misspecified, the standard likelihood-based
estimators of β1 may not generally target either

E(Y 1|X=x)/{1−E(Y 1|X=x)}
E(Y 0|X=x)/{1−E(Y 0|X=x)} or E(Y 1)/{1−E(Y 1)}

E(Y 0)/{1−E(Y 0)} .

The concern for model misspecification for non-linear models is
for example highlighted in the (EMA, 2015) guideline.
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FDA guidance on covariate adjustment

“after suitably addressing the treatment
effect definition, covariate adjustment
using linear or nonlinear models can be

used to increase precision.”
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Covariate Adjustment for Marginal Estimands

Covariate adjustment is a statistical analysis method with
high potential to improve precision for many trials.

Pre-planned adjustment for baseline variables when
estimating average treatment effect.

Estimand is same as when using unadjusted estimator (e.g.,
difference in means).

Goal: avoid making any model assumptions beyond what’s
assumed for unadjusted estimator (robustness to model
misspecification).

(e.g., Koch et al., 1998; Yang and Tsiatis, 2001; Rubin and van der Laan, 2008;
Tsiatis et al., 2008; Moore and van der Laan, 2009b,a; Zhang, 2015; Jiang
et al., 2018; Benkeser et al., 2020)

In what follows, we focus on binary and continuous endpoints.
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Example

Suppose we aim to learn the treatment effect on a binary
outcome Y (e.g., ‘disease’).

Age A Y Y 1 Y 0

40 1 1 1 ?
50 1 0 0 ?
60 1 1 1 ?
50 0 0 ? 0
30 0 1 ? 1
40 0 0 ? 0

By randomization: fine to compare outcomes of treated with
outcomes of untreated.

Based on baseline covariates (e.g., age): guesses about what
outcome would be for all participants if they were (un)treated.

By using the models that were used to obtain conditional
estimates.
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Covariate adjusted estimator: Model fitting

Step 1: Model fitting
Fit a logistic regression model for outcome Y given treatment
allocation A and Age.

Simple model [Focus challenge]:

P(Y = 1|A,Age) = logit−1(β0 + β1A+ β2Age).

Model with interactions:

P(Y = 1|A,Age) = logit−1(β0 + β1A+ β2Age + β3A · Age).

Two logistic regression models, one per arm.
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Covariate adjusted estimator: Predicting

Step 2: Predicting
Use

P(Y = 1|A,Age) = logit−1(β0 + β1A+ β2Age)

to impute outcome under treatment (A = 1) and control
(A = 0) for all patients:

Age A Y Y 1 P̂1 Y 0 P̂0

40 1 1 1 0.8 ? 0.7
50 1 0 0 0.6 ? 0.55
60 1 1 1 0.7 ? 0.6
50 0 0 ? 0.7 0 0.6
30 0 1 ? 0.6 1 0.5
40 0 0 ? 0.5 0 0.45

P̂1 for patient i : logit−1(β̂0 + β̂1 + β̂2Agei )

P̂0 for patient i : logit−1(β̂0 + β̂2Agei )
19 / 36



Covariate adjusted estimator: Averaging

Step 3: Averaging
Take the average of imputed outcomes:

Compute standardized estimators for treatment specific means

Ê
(
Y 1

)
= 1

n

∑n
i=1 P̂

1
i

Ê
(
Y 0

)
= 1

n

∑n
i=1 P̂

0
i

Calculate treatment effect of interest:

Mean difference Ê
(
Y 1

)
− Ê

(
Y 0

)
Odds ratio Ê(Y 1)/{1−Ê(Y 1)}

Ê(Y 0)/{1−Ê(Y 0)}

Mean of predictions based on glm’s
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(
Y 1

)
− Ê
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Ê(Y 0)/{1−Ê(Y 0)}
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Simulation Results

Results for binary outcome and risk difference under
correctly specified models

n Effect Estimator type Bias Power MSE RE

100 -0.201 Unadj. 0.025 0.463 0.829 1.000
Adj. 0.023 0.607 0.755 0.911

200 -0.201 Unadj. 0.010 0.821 0.864 1.000
Adj. -0.001 0.895 0.749 0.867

500 -0.126 Unadj. -0.013 0.798 0.979 1.000
Adj. -0.007 0.862 0.850 0.868

1000 -0.091 Unadj. 0.012 0.837 0.898 1.000
Adj. 0.020 0.892 0.817 0.910

Results from Benkeser et al. (2020) “Improving precision and power in

randomized trials for COVID-19 treatments using covariate adjustment, for

binary, ordinal, and time-to-event outcomes.” Biometrics.
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What if models are misspecified?

What if relationship between age and outcome in treated patients
is not linear. . .

For simplicity, the outcome is continuous now 22 / 36
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What if models are misspecified?

In treatment arm:
mean of predictions (under treatment) = mean of observed
outcomes,
regardless of whether your model is correct or not.

Under randomization, this robustness against
misspecification also holds for mean of predictions (under
treatment) for all patients

⇒ Consistent estimator, even when model is wrong.

Model misspecification may reduce efficiency.

Despite the precision loss, (almost) never outperformed by the
standard analyses.
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Inference

Standard errors easy to calculate

1 Robust standard errors (Tsiatis et al., 2008; Rosenblum and
Van Der Laan, 2009; Ye et al., 2023):

Similar to variance of sample mean

sample variance of
2A(Y − P̂1)+ P̂1−(2(1−A)(Y − P̂0)+ P̂0)−(Ê(Y 1)− Ê(Y 0))
for a mean difference

Takes into account uncertainty in imputations

2 Non-parametric bootstrap

and are valid even when the model is misspecified

or when variable selection is used (Avagyan and Vansteelandt,

2021).
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Recommendations

Important to use predictions based on glm’s with canonical
link.

Otherwise we need slightly different approach (AIPW,
TMLE).

Use of baseline covariates raises concerns due to missing
data

Easily addressed: mean/mode imputation.

Without inflating risk of bias.

I haven’t covered all available methods

There are no other methods that have more power and have
the same robustness.
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Super-covariates

Recently a new approach based on so-called super-covariates
gained attention (PROCOVA):

1 Fitting a prognostic model to predict outcomes under the
control condition in a historical dataset.

2 Use this to make a prediction for all patients in current trial
under control (i.e., super-covariate).

3 Estimating the treatment effect in the current study using a
linear model while adjusting for the super-covariate only.

E (Y |A,XSC ) = β0 + β1A+ β2XSC .
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Concerns about PROCOVA

Some concerns

Limited to continuous outcomes; no easy way to extend to
ordinal, binary or time-to-event endpoints.

Does not allow for treatment effect heterogeneity (i.e.,
treatment effect is same in all covariate strata).

The prognostic score will be less predictive of the
treatment-arm outcomes (Schuler et al., 2022).

Historical trial population will generally differ from that in the
considered trial: loss of power.

Association between outcome and covariates may differ
between the historical and trial population.
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Possibly safer option

Also include (a few) other baseline covariates in addition to
the super-covariate.

For example, including the baseline measurement of the
primary outcome is usually recommended.
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How to determine covariates for adjustment?

To gain power, it’s important that the variables are
associated with the outcome (i.e., prognostic).

Recommended by EMA and FDA: Pre-specify baseline
variables and model.

This is a difficult, if not impossible, task!

Another possibility is to use data-adaptive methods, which
includes stepwise regression, Lasso, machine learning, . . . .

No need for historical data at all,

but one can make use of historical data when available.

E.g., including a super-covariate as one of the potential
variables to select from can lead to finite sample gains.

Important: Pre-specify variable / model selection algorithm as
well as a list of candidate covariates!
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Näıve use of machine learning is problematic

Unfortunately, näıve use of machine learning induces bias.

There is regularization bias because machine learning has
been optimized for prediction,
not for the evaluation of treatment effects.

Obtaining correct standard errors is challenging, because the
uncertainty in machine learning predictions is unknown.

With flexible machine learning, there may be overfitting bias
due to training the prediction model and evaluating the
treatment effect on the same data.
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How to accomodate these biases?

To eliminate bias from the estimated mean outcomes, we must:

Step 1: Model fitting/Training
Train a prediction model for outcome Y given treatment
allocation A and baseline covariates X .

Step 2: Predicting
Use this model to predict outcome under treatment and
control for all patients.

Step 3: Targeting
Shift predictions by a constant so that the average
prediction in the treated equals the average outcome in the
treated (similar for control).

Step 4: Averaging
Take the average of threse predictions, and calculate
treatment effect of interest.
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How to accomodate these biases?

Overfitting bias can be eliminated by training the model
on one subsample and evaluating the treatment effect
on another subsample.
(this can be done without precision loss)

A by-product of targeting is that standard errors are simple
to calculate
because they are made immune to the uncertainty in the machine

learning predictions.
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Reflections: targeted learning

This strategy is called targeted learning or Targeted
Maximum Likelihood Estimation (TMLE; Van Der Laan and

Rubin (2006)).

It updates initial predictions and targets them towards the
estimand of interest.

It brings data analysis back to its essence:
translating a scientific question into an estimands, doing
sanity checks, . . .
with automated model building strategies in background.

It has the potential to deliver an additional power increase
over standardization,

but arguably the main benefit is that it enables
pre-specification of the analysis.
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Thank you for your attention!

Interested? Pre-print and Tutorials

E-mail: kelly.vanlancker@ugent.be
website: KellyVanLancker.com
The opinions in this presentation are of the authors and do not necessarily

represent those of anyone else.
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